### Serena R.

Junior**Q Specialties**:

**Primary:**Physics

**Secondary:**Math

**Major(s)**: Computer Science and Engineering (ENGR)

- Thursday: 1:00pm - 3:00pm 3:00pm - 5:00pm
- Friday: 11:00am - 1:00pm

**Schedule**Fall 2020 (Finals Week)

### Topics by Course

##### MATH1060Q - Precalculus

Absolute Value Functions

Algebra Review (fractions, factoring, simplification, etc.)

Applications of Trigonometry (Periodic Motion)

Applications of Trigonometry (Triangles)

Basic Trig Functions

Exponential Functions

Exponential Growth and Decay

Function Composition

Functions

Graphs of Trigonometric Functions

Introduction to Periodic Motion

Inverse Functions

Inverse Trig Equations

Linear Functions

Lines and Planes

Logarithmic Functions

Modeling With Functions

Polynomial Long Division

Polynomials

Quadratic Functions

Rational Functions

Solving Trig Equations

Square Root Functions

The Unit Circle

Trigonometric Identities

Trigonometry

##### MATH1131Q - Calculus I

Antiderivatives

Calculating Limits with Limit Laws

Chain Rule

Concavity

Continuity

Derivative as a Function

Derivatives

Derivatives of Logarithmic Functions

Derivatives of Polynomial and Exponential Functions

Derivatives of Trig Functions

Exponential Functions

Exponential Growth and Decay

Fundamental Theorem of Calculus

Horizontal Asymptotes

How Derivatives Affect the Shape of a Graph

Implicit Differentiation

Indefinite Integrals

Indeterminate Forms

Inverse Functions

L'Hopital's Rule

Limit of a Function

Limits at Infinity

Linear Approximations and Differentials

Logarithmic Functions

Mathematical Models

Minimum/Maximum Problems

Net Change Theorem

New Functions from Old Functions

Optimization

Points of Inflection

Precise Definition of a Limit

Rates of Change

Related Rates

Representing Functions

Riemann Sums

Substitution Rule

Tangent and Velocity Problems

The Definite Integral

##### MATH1132Q - Calculus II

Absolute Convergence

Alternating Series

Application of Calculus to Physics and Engineering

Applications of Taylor Polynomials

Approximate Integration

Arc Length

Area Between Curves

Area in Polar Coordinates

Calculus with Parametric Curves

Comparison Test

Curves Defined By Parametric Equations

Direction Fields

Improper Integrals

Integral Test

Integration By Parts

Modeling with Differential Equations

Partial Fractions

Polar Coordinates

Power Series

Probability

Ratio Test

Representing Functions as Power Series

Riemann Sums

Separable Equations

Sequences

Series

Taylor/Maclaurin Series

Volumes (Integration)

Work (Integration)

##### MATH2210Q - Applied Linear Algebra

Applications of Linear Algebra

Basic Linear Systems and Matrices

Cramer's Rule

Determinant of a Matrix

Dot Product

Existence and Uniqueness of Solutions (Linear Equations)

Finding the Inverse of a Square Matrix

Gram-Schmidt Process

Linear Equations

Lines and Planes

One-to-one Functions

Onto Functions

Row Reduction (Gaussian Elimination)

Systems of Equations

Vector Spaces

Vector Subspaces

##### PHYS1010Q - Elements of Physics

Atoms and Nuclei

Circular Motion

Electric Charges

Electromagnetism

Energy

Forces

Gravity

Kinematics

Momentum

Structures and States of Matter

Thermal Energy

Vibrations and Waves

##### PHYS1201Q - General Physics I

Absolute Value

Angular Momentum

Energy

Fluid Statics and Dynamics

Forces

Linear Kinematics

Momentum and Collisions

Rotational Kinematics

Simple Harmonic Motion

Thermodynamics

Torque

Waves

Work

##### PHYS1202Q - General Physics II

AC Circuits

Ampere's Law

Atoms and Molecules

Capacitors

DC Circuits

Electric Field

Electric Force

Electric Potential

EM Waves

Energy

Faraday's Law

Gauss' Law

Inductance

Interference and Diffraction

Lenz's Law

Magnetic Fields

Magnetic Force

Magnetic Torque

Optics

Quantum Mechanics

RLC Circuits

##### PHYS1501Q - Physics for Engineers I

Angular Momentum

Energy

Fluid Statics and Dynamics

Linear Kinematics

Momentum and Collisions

Rotational Kinematics

Simple Harmonic Motion

Thermodynamics

Thermodynamics (Advanced)

Torque

Waves

Work